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LSTM-Assisted SINS/2D-LDV Tightly Coupled
Integration Approach Using Local Outlier

Factor and Adaptive Filter
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Abstract— The tightly coupled integration of strapdown
inertial navigation system (SINS) and 2-D laser Doppler velocime-
ter (2D-LDV) enhances system robustness by directly using
raw 2D-LDV measurements, making it well-suited for land
autonomous navigation. However, this approach struggles with
long-term failures of individual or both 2D-LDV beams and
is sensitive to violations of the vehicle’s lateral zero-velocity
constraint, which can degrade performance. To address these
limitations, this article proposes a novel approach involving a long
short-term memory (LSTM)-assisted SINS/2D-LDV tightly cou-
pled integration, incorporating a local outlier factor (LOF) and
an adaptive filter. The LOF is introduced to evaluate the anomaly
degree of the system’s measurements, while offline datasets
constructed and classified from historical normal data improve
detection accuracy and reduce computational load. The LSTM
is used to predict the 2D-LDV measurements and the vehicle’s
lateral velocity, substituting these predictions for anomalous data
to mitigate their impact. Furthermore, an adaptive filter is used to
adjust the measurement noise covariance matrix of the navigation
filter to avoid the adverse effects of potential errors in LSTM
predictions. The effectiveness of the proposed method is validated
through two groups of experiments, demonstrating satisfactory
performance under both normal conditions and prolonged single-
or dual-beam failures in the 2D-LDV.

Index Terms— Adaptive filter, land autonomous navigation,
local outlier factor (LOF), long short-term memory (LSTM)
network, strapdown inertial navigation system (SINS)/2-D laser
Doppler velocimeter (SINS/2D-LDV) tightly coupled system.

I. INTRODUCTION

WITH the increasing number of land vehicles,
autonomous navigation for land vehicles has emerged

as a prominent research focus in the navigation field
in recent years. Given the ability of global navigation
satellite systems (GNSSs) to provide users with continuous,
high-precision positioning information globally, and the
decreasing cost of GNSS positioning terminals, the GNSS
has been widely used in autonomous vehicle navigation.
Nonetheless, GNSS reliability is compromised in challenging
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environments such as urban canyons, forests, and tunnels,
where signals are obstructed [1], [2]. While the strapdown
inertial navigation system (SINS) can compensate for GNSS
outages, its inherent drawback of cumulative errors over
time limits its effectiveness during prolonged GNSS signal
loss [3], [4]. Thus, achieving long-term, high-precision
autonomous vehicle navigation without the GNSS is a critical
challenge, particularly in military and other security-sensitive
domains.

Odometers (ODs), cameras, and LiDAR are the most com-
monly used sensors in autonomous navigation systems for
land vehicles except the GNSS [5], [6], [7], [8], [9], [10].
The OD autonomously provides vehicle velocity and distance
by gauging the angle of wheel rotation. Their small size,
lightweight nature, ease of implementation, and affordabil-
ity have led to their widespread adoption in land vehicles.
However, the precision of OD measurements is compromised
by wheel conditions (such as tire pressure and wear) and
vehicle operating conditions (including slipping and bumps),
leading to reduced accuracy in practical applications. Cameras
and LiDAR can capture detailed environmental features and
provide navigation data for vehicles through feature tracking
and matching. However, factors such as weather conditions,
vehicle velocity, and the surrounding environment can impact
the reliability of cameras and LiDAR [11], [12].

Laser Doppler velocimeter (LDV) is an optical velocity
sensor that employs laser light to measure velocity using the
optical Doppler effect. Its application extends across meteo-
rology, biomedicine, fluid dynamics, aerospace, and various
other fields, earning acclaim for its precision. Recently, LDV
has gained traction in autonomous land vehicle navigation,
determining vehicular velocity relative to the ground by
measuring the Doppler shift of the scattered light from the
outgoing beam [13]. In contrast to OD, LDV has superior
velocity measurement accuracy, and its noncontact measure-
ment characteristic renders the velocity measurement value of
LDV independent of wheel conditions and less affected by
vehicle driving conditions. Furthermore, when compared to
cameras and LiDAR, LDV not only achieves higher measure-
ment accuracy but also demands fewer computing resources,
exhibits greater adaptability to environmental conditions, and
proves more reliable and practical in challenging operational
scenarios. Current research demonstrates the effectiveness and
superiority of SINS/LDV integration [14], [15], [16], [17],
[18].
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Currently, SINS/LDV integrated navigation systems primar-
ily use 1-D LDV (1D-LDV), which measures the vehicle’s
forward velocity along its trajectory [19]. Consequently, 3-D
velocity measurement is typically realized using nonholonomic
constraints (NHCs). NHC, based on kinematic principles,
assumes negligible slip and jump of the vehicle during motion,
with lateral and vertical velocities approaching zero. Nonethe-
less, perfect NHC is impractical due to the inevitable sideslip
and vertical motion of the vehicle during maneuvers over
uneven terrain, during turns, and under high-speed condi-
tions [20]. Violations of the vertical zero-velocity constraint
in NHC complicate the accurate estimation of the pitch
installation misalignment angle in SINS/1D-LDV integration,
thereby hindering precise height estimation. To address this
issue, To address this issue, our previous research improved
the optical path structure and modeling method of the tra-
ditional LDV, developing a 2-D LDV (2D-LDV) capable of
simultaneously measuring the forward and vertical velocities
of land vehicles [21], [22], [23]. This innovation eliminates the
need for the vertical zero-velocity constraint of NHC, signifi-
cantly enhancing height estimation accuracy in SINS/2D-LDV
integration compared to SINS/1D-LDV integration [23]. Cur-
rently, SINS/2D-LDV integration is implemented in two main
configurations: loosely coupled and tightly coupled integra-
tion. In the loosely coupled configuration, the observation
equation is based on the lateral zero-velocity constraint of the
NHC and the 2-D velocity synthesized from the two beam
velocities of the 2D-LDV. In contrast, the tightly coupled
configuration uses the individual beam velocities of the 2D-
LDV and the lateral zero-velocity constraint of the NHC
to formulate the observation equation. The tightly coupled
integration method is more robust than the loosely coupled
approach, as it can partially restrict SINS velocity errors by
using partial beam measurements of 2D-LDV.

However, since the 2D-LDV cannot measure the vehicle’s
lateral velocity, the SINS/2D-LDV tightly coupled integration
must still rely on the lateral zero-velocity constraint of the
NHC. Consequently, any violation of this lateral velocity
constraint inevitably impacts the performance of the SINS/2D-
LDV tightly coupled integration. Existing studies suggest
that configuring NHC parameters necessitates considering the
vehicle’s motion state, as well as the installation position and
angle of the inertial measurement unit (IMU) [24]. Hence,
obtaining optimal NHC parameters in practical applications is
a complex challenge, and relying solely on manual adjustments
often fails to yield ideal results. To address these challenges,
Liu et al. explored the correlation between NHC noise and
vehicle motion, linked the NHC noise to the vehicle’s forward
velocity and heading angular velocity, and devised an adaptive
NHC noise method based on the vehicle’s motion state [25].
Brossard et al. [26] pioneered the application of a deep
learning (DL) method based on convolutional neural networks
(CNNs), enabling the mapping between the IMU output and
NHC observation variance, thus improving the positioning
accuracy of IMU dead reckoning. Zhang et al. [24] employed
multiple regression and CNNs to directly estimate lateral
and vertical vehicle velocities, yielding a substantial accuracy
enhancement over traditional NHC noise adjustment methods

in the absence of GNSS. Li et al. [27] in their CNN-based
predictions of NHC values, factored in vehicle motion states,
enhancing prediction accuracy during maneuvers such as turns.
Xu et al. [28] used a back-propagation (BP) neural network to
associate vehicle forward velocity, heading angular velocity,
and lateral velocity. These studies demonstrate that adaptive
adjustments to NHC, whether in the variance or observation
domain, improve the positioning accuracy of the integrated
navigation system, particularly for high-speed maneuvering
vehicles.

In addition to the violation of the NHC lateral zero-velocity
constraint, another challenge that the SINS/2D-LDV tightly
coupled integration may face in practical applications is the
2D-LDV measurement outliers. The performance of LDV is
closely related to the scattered light signal received by the
internal detector, which is influenced by ground conditions,
lens cleanliness, the distance of the detector to the scattering
point, and the operational state of the laser. Although advance-
ments in vehicle-mounted LDV technology generally ensure
reliable signal quality, extreme conditions such as water-
logged roads and deep potholes present significant challenges.
While SINS/2D-LDV tightly coupled integration can partially
mitigate speed errors in SINS using partial beam measure-
ments from the 2D-LDV, it struggles to handle simultaneous
anomalies in both beams, and prolonged reliance on a single
beam significantly degrades system accuracy. Although robust
filters (such as the Sage–Husa adaptive filter, strong tracking
filter, and maximum correlation entropy-based Kalman filter)
and more robust filter observations (such as displacement
increment and position information) can effectively mitigate
the impact of sensor outliers, they remain inadequate for
addressing prolonged sensor failure [29], [30], [31], [32].
In recent years, with the development of artificial intelligence,
machine learning, and DL methods have been used to deal
with outliers and interrupts of sensors. Techniques such as
support vector machines, CNNs, and long short-term memory
(LSTM)-based recurrent neural networks have been employed
to address output interruptions of GNSS and Doppler velocity
log, yielding satisfactory outcomes [33], [34], [35], [36], [37].

Based on the above discussion, 2D-LDV outliers and vio-
lations of the NHC lateral zero-velocity constraint are the
two primary factors affecting the performance of SINS/2D-
LDV tightly coupled integration. To enhance the accuracy and
robustness of SINS/2D-LDV tightly coupled integration for
various complex applications, it is essential to accurately iden-
tify these adverse factors and mitigate their negative effects
during system operation. To this end, this article proposes
an LSTM-assisted SINS/2D-LDV tightly coupled integration
method, which incorporates a local outlier factor (LOF) and
an adaptive Kalman filter. The framework of the proposed
approach is depicted in Fig. 1, and the principal contributions
of this study are delineated as follows.

1) A novel SINS/2D-LDV tightly coupled integrated
navigation method is designed, which integrates an
SINS/2D-LDV tightly coupled model, LOF, LSTM net-
work, and adaptive filter, which can deal with the lateral
constraint violation of vehicle NHC as well as short- and
long-term LDV anomalies.
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Fig. 1. Framework of the proposed method.

2) The LSTM model is designed to predict the 2D-LDV
outputs and the vehicle lateral velocity. When outliers
appear in the integrated navigation system, the predicted
values from the LSTM network replace them, reducing
their impact on the integrated navigation system.

3) An outlier detection scheme without any specific distri-
butional assumptions is constructed by introducing the
LOF and preconstructing and classifying the historical
dataset required for detection. This scheme can effec-
tively detect the outlier values of 2D-LDV and the lateral
constraint violation of vehicle NHC, providing new
insights into fault detection in the SINS/LDV integrated
navigation system.

4) An adaptive filter is designed to mitigate the influence of
LSTM network predicted value error on the integrated
navigation system, thereby improving the accuracy and
stability of the system, especially during prolonged use
of LSTM network predicted value.

The subsequent sections of this article are structured as
follows: Section II introduces the SINS/2D-LDV integrated
navigation method. Section III proposes the measurement
value prediction scheme based on the LSTM network, presents
the structure of the LSTM network, and analyzes the input
and output required for 2D-LDV measurement value and
vehicle lateral velocity prediction using the LSTM network.
Section IV describes the LOF-based fault detection method
and the adaptive filter. Section V presents the results and anal-
ysis of the vehicle-mounted experiments. Section VI provides
the conclusions of this article.

II. REVIEW OF SINS/2D-LDV TIGHTLY COUPLED
METHOD

The typical equipment installation relationship for vehicle-
mounted SINS/2D-LDV tightly coupled integration is illus-
trated in Fig. 2. The navigation-grade IMU is installed at the
midpoint of the rear nonsteering axle of the vehicle, with its
body frame defined as the b frame. The origin of the b frame
is at the IMU’s sensitive center, with its three axes xb, yb, and
zb, pointing to the right, forward, and upward, respectively.
The 2D-LDV is mounted close to the IMU to minimize the

Fig. 2. Coordinate system definition.

impact of the lever arm on the system. The 2D-LDV’s body
frame is defined as the m frame, with its origin at the 2D-
LDV’s measurement center, and its three axes, xm , ym , and
zm , pointing to the right, forward, and upward, respectively.
The navigation frame adopts the local geographic reference
frame, denoted as the n frame, with its axes pointing east,
north, and up.

The integration architectures of SINS/2D-LDV are currently
classified into two configurations: loosely coupled and tightly
coupled. In the loosely coupled architecture, the forward and
vertical velocities in the m frame, transformed from the 2D-
LDV beam measurements, are integrated with NHC to correct
SINS errors. However, the presence of outliers in the 2D-
LDV outputs impedes the effective compensation of SINS
errors, resulting in the degradation of the SINS/2D-LDV
loosely coupled system to a pure inertial navigation system.
Conversely, the tightly coupled architecture directly uses the
measurement values of each 2D-LDV beam to constrain SINS
errors. Even if one beam’s measurement is abnormal, the
measurement values of the remaining normal beams can still
effectively mitigate SINS errors, thereby enhancing system
robustness [22].

A. State Equation Model

The SINS/2D-LDV integrated navigation system typically
undergoes precise calibration before utilization, thus this arti-
cle excludes consideration of the installation misalignment
angle error between the IMU and the LDV, as well as the LDV
beam inclination error. Detailed discussions of these errors are
addressed in [23]. The 15-D error state vector of the SINS/2D-
LDV tightly coupled system is described as

xk =

[
φT

n

(
δυn

SINS

)T
δ pT

SINS

(
εb

ib

)T (
∇

b
ib

)T
]T

(1)

where φn represents the attitude error of the SINS. δυn
SINS

denotes the SINS’s velocity error, with its east, north, and
upward components being δυE , δυN , and δυU , respectively.
δ pSINS is the position error of the SINS, which is composed
of latitude error δL , longitude error δλ , and height error δh.
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εb
ib and ∇

b
ib represent the constant biases of the gyroscopes

and accelerometers, respectively.
The SINS error equation is expressed as follows:

φ̇n = φn × ωn
in + δωn

in − Cn
bε

b
ib (2)

δυ̇n
SINS = −φn × f n

+ δυn
SINS ×

(
2ωn

ie + ωn
en

)
+ υn

SINS ×
(
2δωn

ie + δωn
en

)
+ Cn

b∇
b
ib + δgn (3)

δ L̇ = δvN /(RM + h) − vN δh/(RM + h)2 (4)

δλ̇ = sec LδvE/(RN + h) + vE tan L sec LδL/(RN + h)

− vE sec Lδh/(RN + h)2 (5)

δḣ = δυU (6)

ε̇b
ib = 03×1 (7)

∇̇
b
ib = 03×1 (8)

where Cn
b represents the transformation matrix from the b

frame to the n frame. ωn
in represents the angular rate of the n

frame relative to the inertial frame as observed in the n frame.
ωn

en denotes the angular rate from the n frame to the earth
frame within the n frame, while ωn

ie denotes the earth rotation
rate in the n frame. δgn refers to the gravity disturbance error.
f n indicates the specific force in the n frame. RM and RN

are the principal radius of curvature for the prime meridian
and equator, respectively. (·)× is employed to resolve the
antisymmetric matrix, δ represents the corresponding error of
the parameters, and 0i× j denotes the i × j zero matrix.

The error state equation of the SINS/2D-LDV tightly cou-
pled system can be formulated as

ẋk = Fk xk + Gkwk (9)

where Fk, Gk , and wk represent the system state transition
matrix, the noise transfer matrix, and the system noise vector,
respectively. The specific forms of these matrices and vectors
are detailed in [38].

B. Measurement Equation Model

In SINS/2D-LDV tightly coupled integration, the navigation
filter uses the velocity difference between the LDV and the
SINS as velocity observation. Therefore, it is necessary to
unify the coordinate systems by projecting the SINS output
velocity in the n frame onto the frame of the 2D-LDV beam
velocity. The frame of the 2D-LDV beam velocity is defined as
the beam frame, which consists of the two measurement beams
of the 2D-LDV and a virtual beam perpendicular to the plane
formed by the two measurement beams. The direction of the
virtual beam aligns with the xm axis direction in the m frame
shown in Fig. 2, and its measurement value is always zero to
satisfy the vehicle’s lateral zero-velocity constraint. The beam
relationship of the 2D-LDV and the relationship between the
beam frame and the m frame are illustrated in Fig. 3.

In Fig. 3, θ1 and θ2 represent the inclination angles of the
two beams of 2D-LDV, while θ denotes the included angle
between the bisector of the two measurement beams and each
individual beam. υbeam1, υbeam2, and υbeam3 are the measured
velocities of the first and second measurement beams (Beam1
and Beam2) and the virtual beam of the 2D-LDV, respectively.
υm

x , υm
y , and υm

z represent the velocities in three orthogonal

Fig. 3. (a) Beam relationship of 2D-LDV. (b) Relationship between the beam
frame and m frame.

directions of the m frame. Similarly, υm ′

x , υm ′

y , and υm ′

z denote
the velocities in three orthogonal directions of the m ′ frame,
where the m ′ frame is an intermediate frame between the beam
frame and the m frame, defined as follows: The angle bisector
of the two outgoing beams is designated as the z-axis, with the
upward direction being positive. The perpendicular line to the
z-axis within the plane formed by the two outgoing beams is
defined as the y-axis, with the forward direction being positive.
Lastly, the x-axis is determined by the right-hand rule.

According to the definitions of the m ′ frame and the
m frame, a rotational relationship exists between the two.
Specifically, the m ′ frame rotates clockwise around the x-axis
by an angle α to align with the m frame. The angle α is
determined as follows:

α =
π − (θ1 + θ2)

2
. (10)

Remark 1: Once the inclination angles of the two beams of
2D-LDV are determined, the installation relationship between
the beam frame and the m frame is also established. However,
as shown in Fig. 3, the connection between these two frames
is not immediately intuitive. Introducing and defining the m ′

frame clarifies the relationship between the beam frame and
the m frame, making it easier to understand.

From Fig. 3(b), the following transformation relationship
exists between the velocities in the beam frame and the m
frame:

υbeam
=
[
υbeam1 υbeam2 υbeam3

]T
= Cbeam

m ′ υm ′

= Cbeam
m ′ CT

αxυ
m

(11)

where υbeam, υm ′

, and υm represent the true velocity in the
beam frame, m ′ frame, and m frame, respectively. Cbeam

m ′ and
Cαx denote the transformation matrix from the m ′ frame to
the beam frame and the elemental rotation matrix about the
x-axis, respectively, and are denoted as follows:

Cbeam
m ′ =

 0 sin θ − cos θ

0 − sin θ − cos θ

1 0 0

 (12)

Cαx =

 1 0 0
0 cos α − sin α

0 sin α cos α

. (13)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2024 at 03:00:05 UTC from IEEE Xplore.  Restrictions apply. 



XIANG et al.: LSTM-ASSISTED SINS/2D-LDV TIGHTLY COUPLED INTEGRATION APPROACH 8500915

Based on the preceding analysis, the velocity of SINS in
the beam frame is

υ̃
beam
SINS = Cbeam

m ′ CT
αx Cm

b C̃b
nυ̃

n
SINS (14)

where υ̃
n
SINS is the SINS output velocity in the n frame. Cm

b
denotes the attitude transformation matrix from the b frame
to the m frame. C̃b

n represents the error-contaminated attitude
transformation matrix from the n frame to the b frame. The
specific form of the above two attitude transformation matrices
is as follows:

C̃b
n ≈ Cb

n

(
I3 + φn×

)
(15)

Cm
b ≈

(
I3 + φm×

)
(16)

where I3 represents the identity matrix of size three. φm
denotes the installation misalignment angle between the m
frame and the b frame. Generally, the installation misalign-
ment angle can be obtained by calibration before using the
SINS/2D-LDV integration.

The 2D-LDV output velocity in the beam frame is defined
as

υ̃
beam
LDV/NHC =

[
υ̃beam1 υ̃beam2 0

]T
= υbeam

+ vD (17)

where vD is the measurement noise vector defined as

vD =
[
vbeam1 vbeam2 vNHC

]T (18)

where vbeam1 and vbeam1 represent the measurement noise of
the two 2D-LDV beams and vNHC denotes the noise associated
with the NHC lateral zero-velocity constraint.

The measurement equation of the SINS/2D-LDV tightly
coupled system is established as follows:

zk = υ̃
beam
LDV/NHC − υ̃

beam
SINS = Hk xk + vk (19)

where vk = vD denotes the measurement noise, while zk

and Hk represent the measurement vector and the measure-
ment transition matrix, respectively, and can be expressed as
follows:

zk = υ̃
beam
LDV/NHC − υ̃

beam
SINS

= υbeam
+ vD − Cbeam

m ′ CT
αx Cm

b C̃b
nυ̃

n
SINS

≈ υbeam
− Cbeam

m ′ CT
αx Cm

b Cb
n

(
I3+φn×

)(
υn

+ δυn
SINS

)
+vD

≈ Cbeam
m ′ CT

αx Cm
b Cb

n

(
υn

×
)
φn −Cbeam

m ′ CT
αx Cm

b Cb
nδυ

n
SINS+vD

(20)

Hk =
[

Cbeam
m ′ CT

αx Cm
b Cb

n(υ
n
×) −Cbeam

m ′ CT
αx Cm

b Cb
n 03×9

]
(21)

where υn denotes the true velocity in the n frame.

III. MEASUREMENT VALUE PREDICTION SCHEME BASED
ON THE LSTM NETWORK

In current SINS/LDV integrated navigation methods, the
measurement noise covariance matrix is usually enlarged to
mitigate the effects of NHC violations and LDV outliers
on the system [20]. However, this method is insufficient
for prolonged LDV failures, and the intricate nonlinear rela-
tionships between NHC, LDV measurements, and various
factors (including vehicle dynamics, as well as the installation

Fig. 4. Structure of the basic LSTM cell.

position and angle of the LDV and the IMU) often result in
suboptimal adjustments of the measurement noise covariance
matrix, which fails to fully exploit the observed values for
suppressing SINS errors [24]. Moreover, the expansion of the
measurement noise covariance matrix may lead to a loss of
constraint information from measurement values. Given DL’s
superior ability to independently learn the complex, implicit
associations between IMU outputs, vehicle motion states, and
LDV outputs, it is possible to extract and exploit the inherent
coupling relationships through DL methods. Accordingly, this
section uses the widely recognized LSTM method in DL to
estimate the vehicle lateral velocity and the LDV output.

A. Basic Principles of LSTM

LSTM is a variant of RNN capable of learning and storing
long-term input trends, which can work well with time series
data. The traditional RNN structure can be seen as a “loop”
comprising a series of neurons, with each neuron receiving
input data and generating output, which is then passed on
as input to the next neuron. This structure facilitates the
learning of short-term dependencies within sequential data.
However, due to the challenges of vanishing and exploding
gradients, RNNs are less effective with long sequences. LSTM
networks address this limitation by introducing memory cells,
input gates, output gates, and forget gates. The memory cell
retains crucial information, the input gate determines whether
to store current input data in the memory cell, the forget gate
determines the retention or discarding of information within
the memory cell, and the output gate determines whether
to use the information in the memory cell as the current
output. The control of these gates enables LSTM to effectively
capture important long-term dependencies in sequences and
mitigate gradient-related issues. The basic LSTM cell structure
is shown in Fig. 4. ft , it , and ot represent the forget gate, input
gate, and output gate, respectively. ct denotes the state memory
cell. xt and ht are the input information and intermediate
output, respectively. gt represents the candidate memory cell.
σ and tanh denote the activation function. t and t −1 represent
the current moment and the previous moment. The specific
calculation formula of the LSTM is shown by

ft = σ
(
W f x xt + W f hht−1 + b f

)
(22)

it = σ(Wi x xt + Wihht−1 + bi ) (23)

gt = tanh
(
Wgx xt + Wghht−1 + bg

)
(24)

ot = σ(Wox xt + Wohht−1 + bo) (25)
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ct = ft ⊙ ct−1 + it ⊙ gt (26)
ht = ot ⊙ tanh(ct ) (27)

where W f x , W f h , and b f denote the weight and bias of
the forget gate, respectively. Wi x , Wih , and bi refer to the
weight and bias of the input gate, respectively. Wox , Woh ,
and bo represent the weight and bias of the output gate,
respectively. Wgx , Wgh , and bg denote the weight and bias
of the candidate memory cell, respectively. ⊙ denotes the
Hadamard product [39], [40].

B. NHC Lateral Velocity Prediction Based on LSTM

In the construction of an LSTM model, the selection of
appropriate parameters for inputs and outputs is crucial for
improving training efficiency and enhancing prediction accu-
racy. Given that our objective is to predict the vehicle’s lateral
velocity, this parameter serves as the output for both the
training and prediction samples. For the training samples,
the vehicle’s lateral velocity, in the presence of GNSS data,
is derived from the projection of the SINS/GNSS integration’s
velocity onto the vehicle frame (denoted as the m frame in this
article). In scenarios where GNSS is unavailable, this velocity
is obtained by projecting the first few minutes of velocity
output from the pure inertial mode of the SINS onto the vehicle
frame.

To ascertain the input features of the LSTM model, it is
essential to identify the variables associated with the vehi-
cle’s lateral velocity within the integrated navigation system.
According to the Coriolis theorem, the equation describing the
velocity rate in the b frame is formulated as follows:

υ̇b
= f b

−
(
ωb

ie + ωb
ib

)
× υb

+ gb (28)

where υb denotes the velocity in the b frame. f b and ωb
ib

denote the specific force and body angular rate measured by
the accelerometers and gyroscopes in the b frame, respectively.
ωb

ie and gb represent the projections of the Earth’s rotation
rate and the gravity vector in the b frame, respectively. Given
the negligible magnitude of ωb

ie relative to ωb
ib during vehicle

motion, it can be ignored, thereby simplifying (28) to

υ̇b
≈ f b

− ωb
ib × υb

+ gb. (29)

The projection of the gravity vector in the b frame is given
by

gb
=

 g cos ϕx sin ϕy

−g sin ϕx

−g cos ϕx cos ϕy

 (30)

where g is the gravity acceleration. ϕx and ϕy denote the pitch
and roll angles of the system, respectively.

Similar to (29), the equation for velocity rate in the m frame
can be expressed as

υ̇m
≈ Cm

b f b
−
(
Cm

b ωb
ib

)
× υm

+ Cm
b gb. (31)

Based on (31), the velocity in the m frame at time k can be
written as

υm
k ≈ υm

k−1 + Cm
b 1υk

−

∫ k

k−1

(
Cm

b ωb
ib(t)

)
× υm(t)dt + Cm

b gb
k−

1
2
T (32)

where 1υk represents the velocity increment measured by the
accelerometer within the unit time period T , with the subscript
k indicating the corresponding moment.

In (32), Cm
b is derived from the installation misalignment

angle of the IMU, which remains relatively stable over
extended periods. Furthermore, in land vehicles, the pitch
and roll angles are less variable and the variation in gravity
acceleration is small in most scenarios. Hence, the main
variables affecting lateral acceleration in the m frame are
f b, ωb

ib, υ
m
y , and υm

z .
In conclusion, the relationship between the input features

and the vehicle’s lateral velocity in the m frame can be
expressed as follows:

υm
x = υbeam3 = LSTM1( f b, ωb

ib, υ
m
y , υm

z

)
. (33)

C. 2D-LDV Beam Velocity Prediction Based on LSTM

Equation (14) gives the relationship between the velocity in
the beam frame and the velocity in the n frame. It is evident
that the velocity in the beam frame predominantly correlates
with the system output’s attitude and velocity. Following the
velocity update equation of SINS, the velocity in the n frame
at time k can be written as:

υn
k = υn

k−1 + 1υn
f,k + 1υn

g/cor,k (34)

where 1υn
f,k and 1υn

g/cor,k denote the specific force integral
and the gravity/Coriolis velocity integral, respectively, and are
expressed as follows:

1υn
f,k = Cn

b(k−1)1υk −
T
2

ωn
in,k−

1
2
×
(
Cn

b(k−1)1υk
)

+ Cn
b(k−1)

(
1
2
1θ k × 1υk +

1
2

∫ k

k−1

{
1θ(t)

× f b(t) + 1υ(t) × ωb
ib(t)

}
dt
)

(35)

1υn
g/cor,k =

{
−
[
2ωn

ie + ωn
en

]
× υn

+ gn}
k−

1
2
T (36)

where 1θ k represents the angular increment measured by the
gyroscope within the unit time period T .

According to (14) and (34)–(36), it is readily apparent
that the main variables influencing the velocity in the beam
frame include the system’s attitude, angular velocity, velocity,
and specific force. Therefore, the relationship between the
input features and the beam velocity of the 2D-LDV can be
expressed as

(υbeam1, υbeam2) = LSTM2( f b, ωb
ib, υ

n, ϕ
)

(37)

where ϕ is the Euler angle corresponding to Cn
b .

IV. FAULT DETECTION METHOD AND ADAPTIVE FILTER

While the DL method can predict both the vehicle’s lat-
eral velocity and the 2D-LDV’s beam measurement value,
ensuring accurate use of these predicted values is critical
to improving the robustness and accuracy of the integrated
navigation system in practical scenarios. Thus, it is imperative
to employ a reliable method to accurately discriminate the
vehicle sideslip and the validity of the 2D-LDV output to
ensure timely use of predicted values to mitigate system
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errors when the vehicle’s NHC is violated and the LDV
output is abnormal. The chi-square detection-based outlier
discrimination method is widely used in integrated navigation,
and its detection performance is closely related to the test
statistic and threshold. However, when the error distribution is
non-Gaussian or the outliers are inconspicuous, the chi-square
method may result in a missed or false detection. The LOF is
a density-based outlier detection technique that detects outliers
without any specific distributional assumptions, and it has seen
extensive application in power system testing and machinery
health monitoring [41], [42]. Therefore, this section introduces
the LOF into the SINS/2D-LDV integration to monitor the
outputs of the vehicle NHC and the 2D-LDV. Upon detecting
outliers, substituting the LSTM network predicted values for
outliers, and the measurement noise covariance matrix is adap-
tively adjusted according to the innovation residuals, further
improving the robustness of the system.

A. Local Outlier Factor

The LOF quantifies the degree of outliers by assessing the
density between an object and its neighborhood objects, rec-
ognized as a prominent unsupervised data mining technique.
The specific calculation procedure of the LOF is as follows
steps [43].

Step 1 (Define the K-Distance): For an object p in dataset D,
given a positive integer K , its K -distance, denoted as K dis(p),
is defined as the distance dis(p, q) between p and another
object q within dataset D, such that:

1) for at least K objects q ′
∈ D/{p}, satisfy dis(p, q ′) ≤

dis(p, q).
2) for at most K − 1 objects q ′

∈ D/{p}, satisfy
dis(p, q ′) < dis(p, q).

Step 2 (Define the K-Distance Neighborhood): For an object
p in dataset D, its K -distance neighborhood is defined as a
set in D that includes objects (e.g., q) whose distance from p
is not greater than the K -distance of p, that is,

Nk(p) = {q ∈ D/{p}|dis(p, q) ≤ K dis(p)}. (38)

Step 3 (Define the Reachable Distance): Given two objects
p and q in dataset D, the reachable distance of object p with
respect to object q is defined as the maximum of the K -
distance of q and the distance between the p and q, as defined
by the following formula:

reach − disk(p, q) = max{K dis(q), dis(p, q)}. (39)

Step 4: In conjunction with the above steps, the local
reachable density of p can be calculated by the following
equation:

lrdk(p) =

1
k

∑
q∈Nk (p)

reach − disk(p, q)

−1

. (40)

According to (39) and (40), if object p significantly deviates
from its neighboring objects, its neighborhood will encompass
fewer objects and will not be included in the neighborhood of
other objects, which results in the local reachability density
of p is smaller compared to that of other normal objects.

Consequently, the local reachability density represents the
degree of object aggregation within a specified neighborhood.

Step 5: Based on the definition of the local reachable
density, the LOF value of the object p is calculated to assess
its degree of abnormality. It is given by

LOFk(p) =
1
k

∑
q∈Nk (p)

lrdk(q)

lrdk(p)
. (41)

From the LOF calculation steps described above, it is
evident that the LOF of p is the average of the ratios between
the local reachability density of p and that of its K -nearest
neighbors. If p is a normal value, it shares similar properties
with its K -nearest neighbors, resulting in an LOF value close
to 1. Conversely, if p is an outlier, its local reachability density
will be lower than that of its K -nearest neighbors, leading to
an LOF value significantly greater than 1.

B. Fault Detection Solution

When a vehicle experiences sideslip or the beam measure-
ments from the 2D-LDV are abnormal, the corresponding
measurement vector zk will contain the abnormal data, and
then the filter innovation vector will be affected by the outliers.
Therefore, the innovation vector is selected as the object in the
LOF in this article. The filter innovation vector is expressed
as follows:

ek = zk − Hk xk|k−1 (42)

where xk|k−1 represents the one-step prediction of the system
state in the Kalman filter.

To precisely identify the location of the outliers, each of
the three components of the ek is detected individually. For
simplicity, this article demonstrates the calculation process of
LOF using only the first component as an example. The dataset
is constructed as follows:

D1 =
[

ek−N+1(1) ek−N+2(1) · · · ek(1)
]

(43)

where N denotes the set sample size, that is, the window size
of the dataset.

It should be noted that the LDV’s output frequency of
100 Hz presents a challenge for the LOF use in the SINS/2D-
LDV integration. Specifically, a larger window size enhances
the detection accuracy for outliers but also substantially
increases the computational load. Conversely, a smaller win-
dow size reduces computation but may lead to false detections
in the presence of continuous outliers. To address this issue,
we construct a dataset Dh = {Dh1, Dh2, Dh3} using historical
normal data and compare new samples against this dataset
during integrated navigation to determine the abnormality of
the samples. This allows for effective outlier detection while
using a smaller window size.

To enhance the detection accuracy of outliers, data classi-
fication was performed during the dataset construction. For
the datasets Dh1 and Dh2, consisting of the ek components
related to the velocity of the two beams of the 2D-LDV, and
the dataset Dh3, consisting of the ek component related to the
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lateral velocity of the vehicle, they were categorized based on
the forward velocity of the vehicle, as follows:

Dhj( j=1,2) =
{

Dhj (υfor = 0), Dhj (0 < υfor ≤ 5),

Dhj (5 < υfor ≤ 10), Dhj (10 < υfor ≤ 15),

Dhj (15 < υfor ≤ 20), Dhj (20 < υfor ≤ 25),

Dhj (25 < υfor ≤ 30), Dhj (υfor ≥ 30)
}

(44)
Dh3 = {Dh3(υfor = 0), Dh3(υfor ̸= 0)} (45)

where υfor is the vehicle’s forward velocity obtained by the
integrated navigation system.

Based on (44) and (45) and the current υfor, (43) can be
rewritten as

D1 =
[

Dh1(υfor) ek(1)
]
. (46)

According to (46), the spatial distance matrix (SDM) cor-
responding to the dataset D is expressed as follows:

SDM =



dis(D(1), D(1)) · · · dis(D(1), D(N ))
...

...
...

dis(D(M), D(1)) · · · dis(D(M), D(N ))
...

...
...

dis(D(N ), D(1)) · · · dis(D(N ), D(N ))


(47)

where M is an integer between 1 and N .
In (47), each row of the SDM contains the Euclidean

distances between a given object and all other objects in the
dataset. By sorting each row of the SDM in ascending order,
the neighborhood set and K -distance of the object can be
determined based on the preset number of neighbors.

Finally, the LOF of each object can be obtained according
to (39)–(41), denoted as LOF1(ek(1)). Similarly, the LOF of
the other two components of the innovation vector can be
obtained, denoted as LOF2(ek(2)) and LOF3(ek(3)).

By comparing LOF1(ek(1)) and LOF2(ek(2)) with their
respective thresholds, it can be determined whether there is
an anomaly in the two beam measurements of the 2D-LDV.
Similarly, by comparing LOF3(ek(3)) with its threshold, it can
be determined whether the vehicle’s NHC has been violated.
If the LOF value is less than the threshold, it means that
the local density of the current data is close to the historical
data, indicating normalcy and allowing filter estimation to
continue. Conversely, a higher LOF value suggests errors in the
corresponding measurements, prompting the replacement of
the original measurements with those predicted by the LSTM
network. The new measurement vector is denoted by z̄k .

C. Adaptive Filter

After detecting and replacing the outliers, perform (42)
again to update the ek with z̄k . Considering the potential for
significant errors in the measurements predicted by the LSTM
model, a series of fading factors are employed to inflate the
measurement noise covariance matrix. This adjustment aims
to mitigate the impact of LSTM-predicted value errors on the
system’s filtering precision.

Due to discrepancies between the overall accuracy of the
LSTM predicted measurement value and the normal measure-
ment value, the a priori measurement noise covariance matrix
is categorized according to whether the LSTM predicted
measurement value is used or not

Rk =

{
diag

(
σ 2

normal

)
, Not using predicted values

diag
(
σ 2

predict

)
, Using predicted values

(48)

where σ 2
normal and σ 2

predict are the initial variances without and
with the predicted velocity, respectively, which can be pregiven
according to the measurement accuracy of the LDV and the
prediction accuracy of the LSTM model.

The new measurement noise covariance matrix R̂k has the
following relationship with the Rk :

R̂k = Sk Rk ST
k (49)

where Sk = diag{ s1 s2 s3 }, sl denotes the fading factor
associated with the lth measurement component z̄k(l).

Under the Gaussian assumption, the theoretical covariance
of ek can be written as

Ck = Hk Pk|k−1 HT
k + Rk (50)

where Pk|k−1 represents the covariance matrix corresponding
to xk|k−1.

To mitigate disturbances in the system state caused by
excessive prediction value errors, the Sage window smoothing
method is employed to calculate the covariance matrix of
the filter innovation vector. For a given window size L , the
prediction covariance matrix of ek can be calculated as

Ĉk =
1
L

k∑
d=k−L+1

ed eT
d . (51)

According to (50) and (51), the following relation can be
obtained:

Ĉk = Hk Pk|k−1 HT
k + Sk Rk ST

k . (52)

From the above equation, it can be deduced that

Sk(l) = max

(
1,

√
Mk(l, l)
Rk(l, l)

)
, l = 1, 2, 3 (53)

where

Mk = Ĉk − Hk Pk|k−1 HT
k . (54)

Based on the results of (53), the measurement noise covari-
ance matrix can be adjusted by (49) to mitigate the impact of
LSTM prediction error on the integrated navigation system.

V. EXPERIMENT RESULTS AND ANALYSIS

In Section V, a comprehensive dataset was first collected
from the vehicle-mounted SINS/2D-LDV integration to com-
plete the training of the LSTM model and acquire the historical
normal data necessary for LOF detection. The performance of
the proposed method was then evaluated using two sets of
experimental data from long-distance, high-maneuver trials.
All data used in this article were obtained from the identical
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TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL APPARATUS

Fig. 5. Test vehicle and the experimental system.

SINS/2D-LDV integration. Fig. 5 illustrates the experimen-
tal apparatus, comprising a dual-antenna differential GNSS,
a self-developed high-precision IMU, and two homemade 2D-
LDVs. The 2D-LDV used in this article is mounted on the left
side of the IMU, with its measurement beam tilted forward.
The principal parameters of these components are detailed in
Table I.

A. Model Training and Dataset Acquisition

The vehicle traveling trajectory in the training dataset
is illustrated in Fig. 6. This trajectory spans three regions
in Hunan Province: Changsha, Zhuzhou, and Xiangtan.
It includes different scenarios, such as freeways, densely
populated residential areas, university campuses, industrial
parks, and urban ring roads. The labels used for training by the
two models were generated from the vehicle lateral velocity
obtained by postprocessing the SINS/GNSS integration and
the two beam velocities from the 2D-LDV. The distributions
of the velocity on label data are shown in Fig. 7, which
shows that most of the samples in the dataset have vehicle
forward velocities and lateral velocities less than 15 and
0.05 m/s, respectively. Specifically, high-velocity scenarios
are represented by freeways and certain urban ring roads,
while university campuses and densely populated residential
areas constitute low-velocity scenarios. The remaining road
sections are categorized as medium-velocity scenarios, with
vehicle turns and rapid directional changes denoting sideslip
scenarios. The training was conducted on an NVIDIA GeForce
RTX 3080 GPU. The LSTM network architecture encom-
passes an input layer, an LSTM layer with 200 hidden units,

Fig. 6. Vehicle trajectory of the training dataset.

Fig. 7. Distributions of the velocity on the training dataset. (a) Vehicle
forward velocity calculated from the two beam velocities of the 2D-LDV.
(b) Vehicle lateral velocity obtained from SINS/GNSS integration.

a dropout layer with a dropout probability of 0.2, a fully
connected layer, and an output layer. Utilizing the Adam opti-
mizer [44], the network underwent training for 1000 epochs.
The initial learning rate was set to 0.005, with a decay factor
of 0.5. The training batch size was 128, and the mean square
error obtained from the difference between the predicted and
actual values was used as the loss function.

In accordance with the velocity classification depicted in
Fig. 7(a), the historical innovation vector data required for
LOF detection can be obtained by the SINS/2D-LDV integra-
tion. To ensure the normality of the historical data, the LDV
output and the vehicle motion state were initially assessed
to filter out abnormal data. Thus, the historical innovation
vector data necessary for LOF detection was acquired under
conditions of normal LDV output and the absence of vehicle
sideslip. As explained in Section IV-B, constructing a histor-
ical dataset using the system’s normal data and classifying it
based on different vehicle velocities enables effective outlier
detection, even with a smaller data window. Given the system’s
100-Hz data update rate, the LOF detection window size was
set to 100 to improve detection efficiency (a larger window
size may be selected if the navigation computer’s perfor-
mance permits). During each detection process, 99 values are
randomly selected from the historical dataset based on the
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Fig. 8. Vehicle trajectory in the first experiment.

TABLE II
COMPARISON OF THE PERFORMANCE OF THE FIVE METHODS IN THE

FIRST EXPERIMENT (177.27 km)

vehicle’s current velocity to determine if the current data is
normal. As described in Section IV-A, the LOF calculates
the density deviation between a data point and its neighbors.
If the density of a data point is significantly lower than that
of its neighbors, it is considered an outlier. Thus, the choice
of the LOF’s neighborhood value and detection threshold
directly affects outlier detection accuracy. In this article, the
LOF neighborhood value K was set to 75, with the detection
thresholds for LOF1(ek(1)) and LOF2(ek(2)) set to 7.5 and for
LOF3(ek(3)) set to 3. These values are determined based on
the principles of LOF and engineering experience. Since the
vehicle’s lateral velocity is much smaller than the two mea-
surement values of the 2D-LDV, the threshold for LOF3(ek(3))

was set lower than those for LOF1(ek(1)) and LOF2(ek(2)).
Some details on the selection of LOF parameters can be found
in [43].

B. Performance Evaluation

To evaluate the performance of the proposed SINS/2D-
LDV tightly coupled integration scheme, five methods were
designed for comparison.

Method 1: The traditional SINS/LDV integration approach,
where LDV provides only the forward velocity of the vehicle.

Method 2: The SINS/2D-LDV tightly coupled approach is
explicated in Section II.

Fig. 9. LDV velocity output curve in the first experiment.

Fig. 10. Horizontal location error of the first experiment. The top is the
absolute position estimation error and the bottom is the relative position error.

Fig. 11. First experiment’s height positioning error.

Method 3: This method, an extension of Method 2, involves
identifying outliers in the lateral velocity of the vehicle using
LOF and subsequently replacing them with predictions from
LSTM.

Method 4: Building upon Method 2, this approach detects
outliers in both 2D-LDV beam measurements and replaces
them with LSTM-predicted measurements.

Method 5: The integrated navigation method proposed in
this article.

The first set of experiments lasted approximately 2.28 h
with a total distance of 177.25 km. The trajectory of the
vehicle and the output velocity of the 2D-LDV are illustrated
in Figs. 8 and 9, respectively, with υLDV in Fig. 9 representing
the 1-D velocity calculated from the two beam velocities
of the 2D-LDV. Figs. 10 and 11 depict the horizontal and
vertical positioning accuracies of different methods, respec-
tively. Table II presents the corresponding maximum (Max)
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Fig. 12. Abnormal data detection results. (a) LOF1(ek(1)). (b) LOF2(ek(2)). (c) LOF3(ek(3)). (d) Chi-square test value based on ek(1). (e) Chi-square test
value based on ek(2). (f) Chi-square test value based on ek(3).

and root mean square error (RMSE) of position errors. The
five methods demonstrate satisfactory accuracy, with both the
maximum horizontal positioning error being almost less than
0.1‰ of the total distance. These positioning results reflect the
exceptional performance of LDV, where its ultrahigh measure-
ment precision and scale factor stability enhance the capability
of the SINS/LDV integration for high-precision positioning
overextended distances. Method 2 has slightly better horizontal
accuracy than Method 1 and significantly better vertical posi-
tioning accuracy. This improvement is because the vehicle’s
vertical velocity in Method 2 is measured by 2D-LDV, which
is substantially more accurate than the vertical zero-velocity
constraint employed in Method 1. Methods 3, 4, and 5 demon-
strate superior positioning accuracy compared to Method 2,
with Method 5 exhibiting the highest positioning accuracy.
This underscores the efficacy of the proposed LOF-based
outlier detection method, which effectively identifies violations
of NHC lateral constraints and detects outliers in the 2D-
LDV output. Additionally, the LSTM network constructed
in this article effectively predicts the lateral velocity of the
vehicle and the measurement values of 2D-LDV, contributing
to the superior performance of Methods 3, 4, and 5 over
Method 2.

To further demonstrate the superiority of the proposed
method, particularly its fault detection capability in SINS/2D-
LDV tightly coupled integration, Fig. 12 illustrates the outlier
detection results of the LOF-based method and the commonly
used residual chi-square test based on the Mahalanobis dis-
tance for the first set of experiments. Both methods detect the
three components of the innovation vector individually. Fig. 13
shows the filter measurement vector used by Methods 5 and
2. The detection results reveal that the proposed method is
more sensitive to dataset outliers than the traditional residual

chi-square test. In most integrated navigation systems, the
threshold for identifying outliers using the chi-square test is
typically set greater than χ2(0.1), where 0.1 represents the
significance level [45]. When the chi-square test threshold is
set to 2.71 (χ2(0.1)), during the first vehicle test, it detects
only a few 2D-LDV measurement outliers and fails to identify
the vehicle’s lateral zero-velocity violation. This is because,
during the experiment, there were no significant anomalies in
the 2D-LDV, and the vehicle’s side-slip was not severe. The
residual chi-square test method is more effective in detecting
abrupt faults but is less sensitive to slow-varying faults. Four
outlier cases are selected to validate the effectiveness of the
proposed method. As shown in Fig. 13, Cases 1 and 2 occur
during vehicle start and stop when the vehicle velocity is
very low, causing LDV to fail in measuring the velocity
value—a common issue in LDV, where the Doppler signal is
obscured by noise due to poor signal quality at low velocities.
Cases 3 and 4 arise during vehicle movement, representing
scenarios where velocity is maintained when the LDV signal
is poor—an anomaly common in LDV. Fig. 12 shows that the
proposed method accurately detects all four selected cases,
whereas the residual chi-square test method fails to detect them
accurately, even with a threshold (χ2(0.25)) set much lower
than the empirical value. Additionally, details from the four
cases in Fig. 13 reveal that the LSTM network constructed
in this article achieves an accurate prediction of LDV output
in the presence of LDV outliers. Fig. 13 also shows that the
proposed method can detect significant lateral velocity changes
in the vehicle and provide relatively accurate predictions,
unlike Method 2, which consistently has a lateral velocity of
zero due to lateral constraints. This discrepancy explains why
the positioning accuracy of Method 3 is better than that of
Method 2.
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Fig. 13. Filter measurement vector in Methods 2 and 5.

Fig. 14. Position error of Methods 5 and 6 in the first experiment.

The enhanced positioning accuracy of Method 3 over
Method 2, and Method 5 over Method 4, suggests the impor-
tance of considering the influence of vehicle lateral velocity in
integrated navigation for enhancing system accuracy. To assess
the performance of the LSTM-predicted lateral velocity-
assisted SINS/2D-LDV tightly coupled integration across the
entire navigation process, Method 6 was introduced based on
Method 5. The primary distinction between the two methods
is that Method 6 utilizes the LSTM-predicted lateral velocity
throughout the vehicle’s entire navigation process, whereas
Method 5 only employs it when a violation of the NHC
lateral constraint is detected. Comparative results between
Method 6 and Method 5 are shown in Fig. 14. Additionally,
Fig. 15 provides a comparison between NHC-based lateral
zero velocity, the LSTM-predicted lateral velocity, and the
true lateral velocity obtained from high-precision SINS/GNSS
integration. The results in Fig. 14 show no significant differ-
ence in positioning accuracy between Method 5 and Method
6. This is because, during normal driving without vehicle
sideslip, the lateral velocity is generally very small (as shown
in Fig. 15, where the lateral velocity remains close to zero most
of the time). When the lateral velocity deviates from normal
(i.e., when the NHC lateral constraint is violated), Method
5 can promptly detect this and replace the lateral zero velocity
constraint with the predicted value. The results in Fig. 15
also indicate that the LSTM-predicted lateral velocity is very
close to the true value, with significantly smaller velocity
errors compared to the widely used lateral zero velocity
constraint. These reduced velocity errors also lead to smoother
positioning outcomes in Method 6 compared to Method 5,

Fig. 15. Comparison of LSTM-predicted lateral velocity and zero lateral
velocity constraint in the first experiment.

TABLE III
HORIZONTAL NAVIGATION PARAMETER ERRORS WITH DIFFERENT

METHODS AFTER 4000 S (99.95 km)

Fig. 16. Position error of the integrated navigation system in the case of
2D-LDV interruption in the first experiment.

as illustrated in Fig. 14. In conclusion, Method 5 proposed
in this article is sufficient to address the impact of vehicle
sideslip on integrated navigation systems in practical appli-
cations. The overall performance improvement from using
LSTM-predicted lateral velocity throughout the entire vehicle
navigation process is generally limited. Moreover, frequent use
of the predicted lateral velocity introduces new challenges,
such as increased computational demands and greater sensi-
tivity to the accuracy of lateral velocity predictions.

In Figs. 10–13, the outliers in the LDV data were transient,
typically lasting less than 3 s. Consequently, validating the
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Fig. 17. Velocity error of the integrated navigation in the case of LDV
interruption in the first experiment.

robustness of the proposed method against prolonged LDV
measurement interruptions becomes imperative. To thoroughly
evaluate the effectiveness of the method during LDV failures,
two simulations were performed using the first set of experi-
mental data: one involving the second beam of the 2D-LDV
failing at 4000 s, and another featuring a concurrent failure of
both beams. In the case of LDV failure for a long period of
time, Figs. 16 and 17 show the position and velocity errors
using the proposed Method 5 and Method 5 without adaptive
filtering (Method 7), pure inertial navigation (upward chan-
nel isolation), and navigation filter using only time updates.
Table III shows the horizontal navigation parameter errors
for the different methods after LDV failure (after 4000 s).
The results show that during extended LDV failure (lasting
1.16 h and covering a distance of 99.95 km), the proposed
method exhibited horizontal position errors RMSE of 30.29 m
when a single 2D-LDV beam failed and 75.11 m when both
beams failed simultaneously. Notably, the maximum height
errors remained below 25 m in both cases, demonstrating
the method’s capability to handle long-term 2D-LDV failures.
In contrast, the current SINS/LDV integration relies solely
on time updates when LDV measurements fail, essentially
reverting to a pure inertial navigation system. As indicated
in Table III, this approach results in a maximum horizon-
tal position error approaching 1.8 km. This divergence is
attributed to the failure of the integrated navigation system
to isolate the upward channel from the horizontal channel
during time updates, thereby impacting horizontal positioning
results. For pure SINS with isolated upward channels, the
maximum horizontal position error reaches 520.94 m, which
still significantly exceeds the performance of the proposed
method. Thus, the proposed approach markedly improves the
navigation accuracy compared to commonly used methods
during prolonged 2D-LDV failures. Furthermore, the adap-
tive filtering method developed in this article significantly
enhances integrated navigation accuracy. Using the adaptive
filter, the maximum horizontal position error is decreased
by 88.56% and 95.23% for single and all 2D-LDV beam
failures, respectively, compared to the nonadaptive case. This
underscores the importance of adjusting the prior measurement
noise covariance matrix based on the prediction accuracy of
the LSTM network and expanding the measurement noise

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE FIVE METHODS IN THE

SECOND EXPERIMENT (197.42 km)

Fig. 18. Vehicle trajectory in the second experiment.

Fig. 19. LDV velocity output curve in the second experiment.

covariance matrix to mitigate outlier effects on the integrated
navigation system. Moreover, the proposed method exhibits a
67.37% and 59.67% decrease in maximum horizontal position
error and horizontal position RMSE, respectively, when a
single 2D-LDV beam fails compared to when both beams fail
simultaneously. Concurrently, it achieves improved accuracy
in altitude and velocity estimation, suggesting that when one
of the 2D-LDV beams fails, the remaining normal beam still
effectively suppresses the navigation system errors.

To further substantiate the efficacy and assess the pre-
cision of the proposed SINS/2D-LDV integrated navigation
approach, we tested it on a second set of experimental data.
The movement trajectory of the vehicle and the LDV output
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Fig. 20. Position error of the second experiment.

Fig. 21. Position error of the integrated navigation system in the case of
2D-LDV interruption in the second test.

in the second experiment are depicted in Figs. 18 and 19. This
experiment spanned approximately 2.39 h and covered a total
distance of 197.42 km. The position errors of the different
methods are depicted in Fig. 20 and Table IV. Fig. 21 shows
the position errors for each method during extended periods
of 2D-LDV failure. Each method’s performance in the second
set of experiments was similar to that in the first set. The
proposed method outperforms other comparative methods both
in normal use scenarios and during prolonged LDV failures,
further proving its validity and superiority.

VI. CONCLUSION

To mitigate the impact of both short-term and long-term
anomalies in 2D-LDV measurement value and the violation
of the lateral zero-velocity constraint on the SINS/2D-LDV
integration, this article proposes an LSTM-assisted SINS/2D-
LDV tightly coupled integration approach using LOF and
adaptive filter. Based on the SINS/2D-LDV tightly coupled
approach, which directly uses the raw 2D-LDV measurement
value, an LSTM network is used to predict the 2D-LDV beam
measurement value and the lateral velocity of the vehicle.
Concurrently, an outlier detection mechanism using LOF is
constructed to identify outliers. Upon the detection of outliers,
the predicted values from the LSTM network replace them.
Additionally, an adaptive filter is employed to adjust the
measurement noise covariance matrix to reduce the influence
of predicted value errors on the navigation filter. The accuracy
of the constructed measurement value prediction scheme, the
validity of the designed outlier detection scheme, and the

navigation performance of the proposed method have been
corroborated using data from two sets of long-distance exper-
iments. The findings indicate that the proposed method can
handle various complex scenarios and provides a new effective
perspective for improving the reliability of the SINS/LDV
integrated navigation system.

This research utilizes a 2D-LDV and a navigation-grade
IMU within the integrated system. Subsequent research will
investigate the potential of integrating SINS with 3D-LDV,
as well as the feasibility of integrating LDV with low-cost
SINS.
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