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Abstract
With its advantages of high velocity measurement accuracy and fast dynamic response, the laser
Doppler velocimeter (LDVs) is expected to replace the odometer (OD) in combination with a
strapdown inertial navigation system (SINS) to give a higher-precision integrated navigation
system. Since a LDV has higher velocity measurement accuracy and data update frequency than
an OD and Doppler velocity log, a LDV is used for the first time in this paper to aid a SINS in
in-motion alignment. Considering that some approximation is used in the alignment model, the
uncertainty noise of the sensors during the motion process and the unknown noise parameters
during the filter process, an adaptive unscented quaternion H-infinite estimator (AUSQUHE) is
proposed. The proposed AUSQUHE method has high robustness since it combines the
advantages of an unscented quaternion estimator and H-infinite filter. The adaptive threshold of
the H-infinite filter and the adaptive measurement noise covariance matrix are introduced to
make the filter adapt to the changing environment and accelerate the convergence of errors. The
performance of the proposed method is verified by a vehicle field test with a normal LDV signal
and a vehicle test with the LDV signal disturbed by noise. The results show that the proposed
method has higher alignment accuracy, faster convergence speed and stronger robustness than
the four other compared methods.
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1. Introduction

Strapdown inertial navigation systems (SINSs) have been
widely used in aerospace, military, industrial and consumer
fields because of their self-containment, anti-jamming cap-
ability, high sampling rate and good concealment [1]. In
recent years, the application of SINSs in vehicles has attracted
increasing attention. The initial alignment determines the atti-
tude matrix between the body frame and the navigation frame
since the inertial measurement unit (IMU) provides the angu-
lar rate and acceleration in the body framewhereas the purpose
of navigation is to determine the position of the vehicle in the
navigation frame [2, 3]. The initial alignment of the SINS is
one of the key technologies that affect the accuracy of vehicle
navigation, and the accuracy and speed of the initial alignment
directly affect the accuracy of the SINS [4], so the initial align-
ment of a SINS has been a hot research topic.

Motivated by many military applications and commercial
aviation, many researchers have studied and achieved excel-
lent results in in-motion alignment [5]. Because acceleration
of a vehicle relative to the ground occurs during vehicle move-
ment, it is difficult to obtain accurate gravity information for
the vehicle in the inertial frame. As a result, it is impossible to
complete an accurate in-motion initial alignment process rely-
ing only on the measurement of the gyroscope and accelero-
meter of the SINS. To solve this problem, the external velo-
city measuring device is used to help the SINS to complete
the in-motion alignment, and many effective methods have
been developed. For a high-accuracy SINS, an optimization-
based alignment (OBA) method using global positioning sys-
tem (GPS) velocity was proposed [6]. In the OBA method the
attitude matrix is decomposed into two time-varying attitude
matrices and a constant attitude matrix. The two time-varying
attitude matrices are calculated by the body angular rate and
the navigation angular rate, respectively, and the constant atti-
tude matrix is obtained by Davenport’s q-method based on
the constructed vector observations [7]. Since then, research-
ers have continuously improved the OBA method and expan-
ded the scope of its application, such as the GPS velocity-
based OBA method [8], the odometer (OD) velocity-based
OBA method [9], the Doppler velocity log (DVL) velocity-
based OBA method [10], the GPS position loci-based OBA
method [11], the sliding-window-based OBA method and so
on [12]. By combining the OBA method with a Kalman fil-
ter, the defect of the traditional OBA method (that it cannot
estimate the IMU bias) was solved, and the accuracy of the
OBAmethod improved [13–15]. To complete in-motion initial
alignment of a low-cost SINS, an alignment method combin-
ing the OBA method and an unscented quaternion estimator
(USQUE) was proposed, in which the USQUE was used to
jointly estimate the gyroscope bias and attitude errors [16, 17].
In addition, the USQUE was used separately for in-motion
alignment because it can estimate attitude error as well as other
error parameters and handle the noise in the model [18]. As a
variant of the unscented Kalman filter (UKF), USQUE lacks
adaptive ability to system noise and converges slowly at large

unknown initial attitude errors. In recent years, many useful
methods of in-motion alignment have been proposed, but they
all used GPS, OD or DVL as velocity sensors and seldom con-
sidered the influence of non-Gaussian noises such as outliers
during the operation of these sensors in in-motion alignment.

Based on the laser Doppler effect, a laser Doppler veloci-
meter (LDV) has the advantages of high accuracy, rapid
dynamic response, non-contact measurement, good direc-
tional sensitivity, complete autonomy and good spatial res-
olution, and thus LDVs have been extensively used in
biomedicine, meteorological observation, fluid flow velocity
measurement and so on [19, 20]. In recent years, our research
group has proposed and developed a variety of LDVs with
a reference-beam structure to measure the true vehicle velo-
city over ground and which have a higher velocity measure-
ment accuracy than OD and DVL methods [21–23]. In this
paper, LDV is used for the first time to aid SINS in in-motion
alignment and a new fast robust in-motion alignment method,
named the adaptive unscented quaternion H-infinite estimator
(AUSQUHE), is proposed to improve the alignment accuracy
and speed.

The features and advantages of proposed the in-motion
alignment method are as follows:

(a) LDV is used for the first time to aid SINS to complete in-
motion alignment, whichwill expand the application range
of LDV, and the high-precision velocity provided by LDV
is expected to shorten the time needed for SINS in-motion
alignment.

(b) It represents a new attempt to fuse USQUE with an
H-infinite filter and use it for in-motion alignment. It
avoids possible singularity problems and quaternion norm-
ative constraint problems in order to complete alignment
at large misalignment angles, and reduces the influence
of inaccurate parameter setting, model approximation and
uncertain noise on the alignment result.

(c) The adaptive threshold of the H-infinite filter is proposed
to make the in-motion alignment process more adaptable
to changes in the environment.

(d) Adaptive processing of the noise covariance matrix helps
the filter to maintain good performance without diver-
gence. Meanwhile, the noise covariance matrix with smal-
ler error accelerates the convergence of attitude error.

(e) The proposed in-motion alignment method does not
increase the time complexity significantly, and it is suit-
able for real-time alignment.

The rest of this paper is organized as follows. In section 2,
the vector observations of the in-motion alignment for
LDV/SINS integration are deduced mathematically, and the
process model and observation model are established. In
section 3, the AUSQUHE is proposed. In section 4, the pro-
posed method is compared with the existing typical methods
using vehicle-mounted field test data collected from a LDV-
aided laser SINS. Concluding remarks are given in section 5.
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2. In-motion alignment for LDV/SINS

In this paper, the local level navigation frame is denoted as the
n frame, the vehicle body frame is denoted as the b frame, the
inertial non-rotating frame is denoted as the i frame and the
earth frame is denoted as the e frame.

The velocity kinematic equation in the n frame is given by

υ̇n = Cnb f
b− (2ωn

ie+ωn
en)×υn+ gn (1)

where υn =
[
υnE υnN υnU

]T
is the ground velocity in the n

frame, fb is the specific force in the b frame, gn is the gravity
vector in the n frame, (·)× means to solve the antisymmetric
matrix, ωn

ie is the earth rotation rate with respect to the i frame
and ωn

en is the navigational rotating rate in the n frame relative
to the e frame. ωn

ie and ω
n
en can be expressed, respectively, as

ωn
ie = [0,ωie cosL,ωie sinL]

T (2)

ωn
en =

[
− υnN
RM+ h

,
υnE

RN+ h
,

υnE
RN+ h

tanL

]T
(3)

where ωie is the earth’s rotation speed, L is the local latitude, h
is the local altitude and RM and RN are the principal radius of
curvature of the prime meridian and the equator, respectively.

According to the coordinate transformation method

υ̇n =
(
Cnbυ

b
) ′

= Cnb
(
υ̇b+ωb

nb×υb
)

(4)

where ωb
nb is body angular rate with respect to the n frame.

Substituting equation (4) into equation (1) yields

Cnb
(
υ̇b+

(
ωb
ib+ωb

ie

)
×υb− fb

)
= gn. (5)

2.1. Process model

According to the chain rule of the direction cosine matrix, the
attitude matrix Cnb (t) can be expressed as

Cnb (t) = Cn(t)n(0)C
n(0)
b(0)C

b(0)
b(t) (6)

where b(0) and n(0) denote the initial b frame and n frame,
respectively, which are both non-rotating orthogonal frames
with respect to the i frame.

Assuming that the velocity provided by the LDV is accur-
ate, it is necessary to incorporate it into the process model and
measurement model. In order to achieve this, we denote the
initial b frame as an inertial frame. Equation (6) and the atti-
tude update equation can be written as

Cnb (t) = Cn(t)i Cib(t) (7)

Ċ
i
b(t) = Cib(t)

(
ωbib×

)
(8)

Ċ
i
n(t) = Cin(t) (ω

n
in×) (9)

where

ωn
in = ωn

ie+ωn
en. (10)

Equation (9) is the process model of the proposed method.

2.2. Measurement model

Substituting equation (7) into equation (5) and multiplying by
Cin(t) on both sides we get

Cib(t)
(
υ̇b+

(
ωb
ie+ωb

ib

)
×υb− fb

)
= Cin(t)g

n. (11)

Integrating the time interval of interest on both sides of
equation (11), it can be obtained that

Cib(t)υ
b (t)−υb (0)+

ˆ t

0
Cib(τ)

(
ωb
ie×υb

)
dτ −

ˆ t

0
Cib(τ) f

bdτ

= Cin(t)C
n(t)
n(0)

ˆ t

0
Cn(0)n(τ)g

ndτ. (12)

We define the two vectors as

α(t) = Cib(t)υ
b (t)−υb (0)+

ˆ t

0
Cib(τ)

(
ωb
ie×υb

)
dτ

−
ˆ t

0
Cib(τ) f

bdτ

β (t) = Cn(t)n(0)

ˆ t

0
Cn(0)n(τ)g

ndτ

.

(13)

The measurement model can be given by

α(t) = Cin(t)β (t) . (14)

In order to facilitate the process on computer, it is necessary
to discretize equation (13). The first integral in equation (13)
can be calculated as
ˆ t

0
Cib(τ)

(
ωb
ie×υb

)
dτ

=
M−1∑
k=0

Cib(tk)C
b(tk)
n(tk)

ˆ tk+1

tk

Cn(tk)n(τ) (ω
n
ie×)υn (τ)dτ. (15)

According to [7], the incremental integral in equation (15)
can be approximated by

∆υn(tk) =

ˆ tk+1

tk

Cn(tk)n(τ) (ω
n
ie×)υn (τ)dτ

=

(
T
2
I3 +

T2

6
ωn
in×
)
ωn
ie×υn (tk)

+

(
T
2
I3 +

T2

3
ωn
in×
)
ωn
ie×υn (tk+1) . (16)

The second integral in equation (13) can be calculated as

ˆ t

0
Cib(τ) f

bdτ =
M−1∑
k=0

Cib(tk)

ˆ tk+1

tk

Cb(tk)b(τ) f
b (τ)dτ. (17)
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According to [7], two-sample correction is used to approx-
imate the incremental integral in equation (17)

∆υb(tk) =

ˆ tk+1

tk

Cb(tk)b(τ) f
b (τ)dτ

=∆υ1 +∆υ2 +
1
2
(∆θ1 +∆θ2)× (∆υ1 +∆υ2)

+
2
3
(∆θ1 ×∆υ2 +∆υ1 ×∆θ2) . (18)

According to the aforementioned derivation, the discrete
form of equation (13) can be expressed as

α(t) = Cib(tM)υ
b (tM)−υb (0)

+
M−1∑
k=0

Cib(tk)C
b(tk)
n(tk)

∆υn(tk) −
M−1∑
k=0

Cib(tk)∆υb(tk)

β (t) = Cn(tM)n(0)

M−1∑
k=0

Cn(0)n(tk)

(
TI3 +

T2

2
ωn
in×
)
gn (tk)

(19)

where T is the sampling interval.

3. Proposed AUSQUHE algorithm

The mainstream OBA method requires the constructed model
to have high precision, so most OBA methods are developed
for GPS-aided SINS. Compared with GPS, LDV cannot
provide accurate position and velocity information directly,
and may degrade the alignment performance of the OBA
method. USQUE is a method based on attitude estimation;
besides attitude estimation, it can also estimate other para-
meters, which is not feasible in OBA method. However, as
a quaternion application form of the UKF, USQUE lacks the
self-adaptive capacity to deal with system noise, and has poor
alignment accuracy and slow convergence speed when the
noise characteristics are uncertain. Hence AUSQUHE is pro-
posed to solve this problem. Equations (9) and (14) formulate
the continuous process and measurement model.

The direct implementation of a UKF with a quaternion-
based state is not suitable because the quaternion estim-
ate is determined using the weighted quaternion averaging
operation. Thus, no guarantee can be made that the qua-
ternion will have unit norm. To represent an attitude-error qua-
ternion preserving the constraint of quaternion propagation,
the quaternion is used for attitude propagation and the uncon-
strained three-component vectors of generalized Rodrigues
parameters (GRP) are used for filtering and local attitude error
representation.

Denote the error of the attitude error quaternion by δq=[
δq0, δqT1:3

]T
=
[
δq0, δρT

]T
, the corresponding GRP repres-

entation δℜ is given by

δℜ= f
δρ

a+ δq0
(20)

where a is a parameter from 0 to 1 and f is a scale factor.
The GRP is used to place the singularity of the attitude rep-
resentation in a certain angle range, and different combina-
tions of a and f have different physical meanings. For example,

when a= 0 and f= 1, equation (20) gives the Gibbs vector,
and when a= f= 1, equation (20) gives the standard vector of
modified Rodrigues parameters.

The inverse transformation from δℜ to δq is given by δq0 =
−a∥δℜ∥2 + f

√
f 2 +(1− a)2∥δℜ∥2

f 2 + ∥δℜ∥2
δρ= f−1 (a+ δq0)δℜ

. (21)

In AUSQUHE, the filtering state is defined as

X̂k =
[
δℜT

k X̂ek
T
]T

(22)

where X̂
e
k is the components of the state besides the quaternion.

In this paper, considering the high- precision SINS and LDV
adopted and the short alignment time, other parameters are not
estimated to reduce the amount of calculation.

We write the measurement model (14) as follows:

yk =α(k)−Cin(k)β (k) = h(Xk)+ vk (23)

where Xk is the ideal value of the filtering state at time instant
k and vk is the measurement noise.

The state estimation at time instant k is X̂k, the correspond-
ing covariance is Px,k, and the AUSQUHE algorithm for initial
alignment is described as follows.

3.1. Time update

Generate the sigma points as

χk (i) =



X̂k, i= 0

X̂k+
[√

(n+λ)Px,k

]
i

, i= 1,2, · · · ,n

X̂k−
[√

(n+λ)Px,k

]
i

, i= n+ 1,n+ 2, · · · ,2n

(24)

where n is the dimension of X̂k, λ= σ2 (n+κ)− n, σ is scale
factor with a typical value range of 10−4 ⩽ σ ⩽ 1 and κ is tune
parameter, which is usually set to 0 and 3n to capture some
higher-order information about the distribution.

The weighted weights of the expectation and covariance
matrices can be calculated, respectively, as

Wm (i) =


λ

n+λ
, i= 0

1
2(n+λ)

, i= 1, · · · ,2n
(25)

Wc (i) =


λ

n+λ
+ 1−σ2 + ς, i= 0

1
2(n+λ)

, i= 1, · · · ,2n
(26)

where ς is used to incorporate prior information on the prob-
ability density function of the states.
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χk (i) can be divided as follows:

χk (i) =
[
χδℜ
k (i)T χe

k(i)
T ]T. (27)

The quaternion error corresponding to χδℜ
k (i) is given by

χδq
k (i) =

[
δqk,0 (i) δρk(i)

T ]T (28)

which can be calculated from equation (21).
We denote the quaternion-based sigma points by multiply-

ing the error quaternion by the current attitude quaternion

χq
k (i) = χδq

k (i)⊗ qk. (29)

The sigma points obtained from equation (29) propagate
forward through process model (9) and the propagated qua-
ternion error is calculated using following equation:

χδq
k+1|k (i) = χq

k+1|k (i)⊗
[
χ̄q
k+1|k

]−1
. (30)

χ̄q
k+1|k is the average quaternion of the propagating quaternion

sigma points; explicit details about χ̄q
k+1|k can be found in

[24, 25].
The predicted GRP sigma points χδℜ

k+1|k (i) corresponding

to χδq
k+1|k (i) can be calculated from equation (20).

The propagated sigma points of the state can now be
determined as

χk+1|k(i) =
[
χδℜ
k+1|k(i)

T
χe
k+1|k(i)

T
]T
. (31)

The corresponding state prediction and covariance matrix
can be calculated, respectively, as

X̂k+1|k =
2n∑
i=0

Wm (i)χk+1|k (i) (32)

Px,k+1|k =
2n∑
i=0

Wc (i)
{
χk+1|k (i)− X̂k+1|k

}
×
{
χk+1|k (i)− X̂k+1|k

}T
+Qk (33)

where Qk denote the process noise covariance matrix at time
instant k.

3.2. Measurement update

Similar to equation (24), the new sigma points χ∗
k+1|k (i) are

regenerated using X̂k+1|k and Px,k+1|k. Similar to equations
(27)–(29), the new quaternion-based sigma points χ∗q

k+1|k (i)
can be obtained, and we define a new set of sigma points as

γ∗
k+1|k (i) =

[
χ∗q
k+1|k(i)

T
χ∗e
k+1|k(i)

T
]T
. (34)

The propagated sigma points in (34) are propagated directly
through the measurement model (23), the predicted sigma
points are Zk+1|k (i).

The predicted mean of measurement, the covariance matrix
of measurement and the cross-covariance matrix of the state
and measurement are calculated, respectively, as

Ŷk+1 =
2n∑
i=0

Wm (i)Zk+1|k (i) (35)

Py,k+1 =
2n∑
i=0

Wc (i)
{
Zk+1|k (i)− Ŷk+1

}
×
{
Zk+1|k (i)− Ŷk+1

}T
+Rk. (36)

Pxy,k+1 =
2n∑
i=0

Wc (i)

{(
χ∗

k+1|k
(i)− X̂k+1|k

)
×
(
Zk+1|k (i)− Ŷk+1|k

)T}
. (37)

The innovation vector is given by

ek+1 = yk+1 − Ŷk+1. (38)

3.2.1. Estimation of measurement noise covariance
matrices. Taking the variance on both side of formula (38)
simultaneously we can get

E
[
ek+1eTk+1

]
=
(
h(Xk+1)+ vk+1 − Ŷk+1

)
×
(
h(Xk+1)+ vk+1 − Ŷk+1

)T
=
(
h(Xk+1)− Ŷk+1

)
×
(
h(Xk+1)− Ŷk+1

)T
+Rk+1 (39)

(
h(Xk+1)− Ŷk+1

)
×
(
h(Xk+1)− Ŷk+1

)T
= Py,k+1 −Rk.

(40)

According to equations (39) and (40), the measurement
noise covariance matrix Rk+1 is given by

Rk+1 = E
[
ek+1eTk+1

]
−Py,k+1 +Rk

=
1
k

k∑
i=1

(
ei+1eTi+1 −Py,k+1 +Ri

)
=

1
k

[
k−1∑
i=1

(
ei+1eTi+1 −Py,k+1 +Ri

)
+
(
ek+1eTk+1 −Py,k+1 +Rk

)]

=

(
1− 1

k

)
Rk+

1
k

(
ek+1eTk+1 −Py,k+1 +Rk

)
. (41)

In order to improve the adaptive ability of equation (41), it
is rewritten as

Rk+1 = (1− ηk+1)Rk+ ηk+1
(
ek+1eTk+1 −Py,k+1 +Rk

)
(42)

5
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ηk+1 =
ηk

ηk+ c
(43)

where η0 = 1 and c is called the fading factor, which is usually
between 0.9 and 0.999.

In order to improve the reliability of Rk in the adaptive pro-
cess, sequential filtering is adopted and the upper boundary
limit R(i)

max and lower boundary limit R(i)
min are set on each diag-

onal component of Rk, forcing it to be in a reasonable range
all the time. The superscript (i) represents the ith element of
the matrix. Equation (42) can be rewritten as

R(i)
k+1 =


(1− ηk+1)R

(i)
k + ηk+1R

(i)
min p(i)k+1 < R(i)

min

R(i)
max p(i)k+1 > R(i)

max

(1− ηk+1)R
(i)
k + ηk+1p

(i)
k+1 others

(44)

p(i)k+1 = e(i)k+1e
(i)
k+1

T
−Py,k+1

(i) +Rk
(i). (45)

3.2.2. Adaptive unscented H-infinite filter. We define the
cost function J as

J=

N−1∑
k=0

∥∥∥Sk− Ŝk
∥∥∥2∥∥∥X0 − X̂0

∥∥∥2
P−1
0

+
N−1∑
k=0

(
∥wk∥2Q−1

k
+ ∥vk∥2R−1

k

) (46)

where X0 and X̂0 are the ideal value of the initial system
state variables and its estimation results, respectively. ∥A∥2W
is defined as the square of the weighted h2 norm of A, i.e.
∥A∥2W = ATWA. N denotes the filtering time. Sk is the estima-
tion matrix; in this paper, the estimation matrix denotes direct
estimation of system state variables. P0 represents the initial
state covariance matrix. wk denotes the process noise at time
instant k.

According to the H-infinite filter theory in [26], the central
idea of an H-infinite filter is to ensure the that the maximum
energy gain from interference signal to estimation error is a
minimum, that is to say, the H-infinite norm of the cost func-
tion is smallest. Therefore, the influence of disturbance and
model uncertainty on the system output is minimized by sat-
isfying the following criteria:

min
ŜkX0,w∈h2,

sup
v∈h2

J=<γ2. (47)

By using the statistical linear error propagation method,
Py,k+1 and Pxy,k+1 can be approximated by

Py,k+1 =Hk+1Px,k+1|kH
T
k+1 +Rk+1 (48)

Pxy,k+1 = Px,k+1|kH
T
k+1 (49)

whereHk+1 is the Jacobian matrices of the nonlinear functions
h(Xk+1).

Based on the extended H-infinite filter in [27], using
equations (38), (48) and (49), the updated equations for the
state vector and covariance matrix are determined by

X̂k+1 = X̂k+1|k+Pxy,k+1P
−1
y,k+1ek+1 (50)

Px,k+1 = Px,k+1|k−
[
Pxy,k+1 Px,k+1|k

]
R−1
e,k+1

×
[
Pxy,k+1 Px,k+1|k

]T
(51)

where

Re,k+1 =

[
Py,k+1 PT

xy,k+1

Pxy,k+1 Px,k+1|k− γ2I

]
. (52)

It can be seen from the above equation that the parameter
γ will affect the positiveness of Px,k+1. When γ is small, the
robustness of the system is strong but the filtering accuracy
of the system decreases. When γ is large, the robustness of
the system decreases but the filtering accuracy of the system
increases. Therefore, an adaptive γ is proposed to ensure the
robustness of the system while ensuring accuracy.

By applying the matrix inversion lemma [28] for equation
(51), we can get

P−1
x,k+1 = P−1

x,k+1|k+P−1
x,k+1|kPxy,k+1R

−1
k+1

(
P−1
x,k+1|kPxy,k+1

)T
− γ−2I> 0. (53)

By rearranging the above equation, we can get

γ2 >max

{
eig

(
P−1
x,k+1|k+P−1

x,k+1|kPxy,k+1R
−1
k+1

×
(
P−1
x,k+1|kPxy,k+1

)T)−1}
(54)

where max
{
eig(A)−1

}
represents the maximum eigenvalue

of matrix A−1.

Let γa =max

{
eig
(
P−1
x,k+1|k+P−1

x,k+1|kPxy,k+1R
−1
k+1(

P−1
x,k+1|kPxy,k+1

)T)−1
}
, then the adaptive γ can be written

as

γ =


(
1+ k0

√
trace(Py,k+1)

eTk+1ek+1

)
γa γ > γmin

γmin γ < γmin

(55)

where k0 is a correlation coefficient and k0 > 0, which is
determined according to the actual situation of the system
through the experiment; trace(A) denotes the trace of the mat-
rix A. γmin is the lower boundary limit set to ensure the accur-
acy of alignment and the stability of the system.
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Finally, by setting the upper boundary limit γmax,
equation (51) is optimized as

Px,k+1 =


Px,k+1|k−

[
Pxy,k+1 Px,k+1|k

]
R−1
e,k+1

[
PT
xy,k+1

PTx,k+1|k

]
γ < γmax

Px,k+1|k−Pxy,k+1P
−1
y,k+1Py,k+1

(
Pxy,k+1P

−1
y,k+1

)T
γ > γmax

. (56)

3.3. Attitude update

The updated status vector is expressed as

X̂k+1 =
[
δℜk+1

T Xek+1
T
]T
. (57)

The quaternion error corresponding to δℜk+1 is given by

δqk+1 =
[
δqk+1,0 δρT

k+1

]T
(58)

which can be calculated according to equation (24).
The attitude quaternion is updated through

qk+1 = δqk+1 ⊗ χ̄∗q
k+1|k (59)

where χ̄∗q
k+1|k is the average quaternion of the propagating qua-

ternion sigma points χ∗q
k+1|k (i).

Resetting δℜk+1 to zeros goes to the next filtering cycle.

4. Vehicle-mounted field test

To verify the performance of the proposed AUSQUHE, two
vehicle tests were carried out in Changsha. Figure 1 shows the
test equipment, which include a self-developed IMU, a dual-
antenna GPS receiver, a navigation computer and a self-made
LDV. The IMU consists of three ring laser gyroscopes with
bias instability of 0.008◦h–1 and random walk of 0.003◦h–1/2

and three quartz accelerometers with bias instability of 50 µg
and random walk of 50 µg h–1/2. The velocity measurement
error of the LDV is 0.1% (1σ) and is calibrated in advance.
The data update frequency of the GPS is 10 Hz, and the
horizontal position accuracy and altitude accuracy are within
0.1 m. The data output frequency of both the IMU and LDV
is 100 Hz. The vehicle remains stationary at the start point
for about 13 min before moving and static attitude alignment
is performed to obtain an accurate initial attitude. Since the
initial conditions are very accurate, the attitude information
obtained by SINS/GPS-integrated navigation is used as the
reference attitude to evaluate the proposed alignment method.
The movement trajectories of the vehicle and the outputs of
the LDV are shown in figures 2 and 3, respectively. As can be
seen from figure 3, the LDV output of the second vehicle is
seriously disturbed by noise.

The following five alignment schemes are designed to eval-
uate the alignment performance of the proposed scheme:

scheme 1: method proposed in this paper
scheme 2: the OBA method proposed in [9]

scheme 3: the USQUE method proposed in [18]
scheme 4: the AUSQUE method
scheme 5: the alignmentmethod obtainedwith anH-infinite

filter combined with USQUE.
In each test group, the initial value of the attitude quaternion

is set as [1 0 0 0]T for the five schemes. For schemes 1, 3, 4
and 5, the initial covariance matrix of attitude error is set as
diag ([3◦ 3◦ 12◦]T)2, and the process noise covariance mat-
rix and initial measurement noise covariance matrix are set as
diag ([10−7◦ 10−7◦ 10−7◦]T)2 and diag ([0.07 0.07 0.07]T)2,
respectively. The attitude errors of different schemes in the
first vehicle test are shown in figures 4–6.

As can be seen from figures 4–6, the difference in the hori-
zontal angle errors among the five schemes is not signific-
ant after 100 s. During the first 100 s of alignment, the con-
vergence speeds of the horizontal angle errors of schemes 1
and 4 are much the same and are the fastest, scheme 3 has
the slowest convergence speed and the convergence speeds
of schemes 2 and 5 are in the middle, but the convergence
speed of scheme 5 is faster than that of scheme 2. Unlike the
horizontal angle errors, the heading angle errors of the five
schemes are obviously different. In figure 6, the convergence
speeds of schemes 1, 4 and 5 are much the same, but schemes
1 and 4 have higher accuracy and stronger robustness than
scheme 5, and the accuracy of scheme 1 is slightly higher than
that of scheme 4. Scheme 3 has the slowest convergence speed
and the worst alignment accuracy. The convergence speed and
alignment accuracy of scheme 2 are in the middle.

Compared with schemes 2–4, the influence of disturbance
and model uncertainty on the system output is minimized in
scheme 1. Additionally, scheme 1 adopts the measurement
noise matrix and threshold γ while scheme 5 does not, which
makes the system robust without sacrificing too much accur-
acy. To sum up, the performance of scheme 1 is superior to the
other schemes in the first vehicle test.

In order to further test the robustness of the proposed
scheme, the threshold of the LDV was adjusted in the second
set of vehicle tests, so that the LDV cannot filter the noise sig-
nal effectively; the attitude errors of different schemes in the
second vehicle test are shown in figures 7–9. It can be seen
from figures 7–9 that, compared with other schemes, the per-
formance of scheme 1 is still the best, as the alignment accur-
acy and the convergence speed of scheme 1 are far superior
to those of the other schemes. When the output of LDV is
disturbed by noise, scheme 1 still has satisfactory alignment
accuracy while the other schemes cannot carry out alignment

7
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Figure 1. Installation diagram for the experimental system.

Figure 2. Two trajectories of the vehicle in the field test.

Figure 3. Velocity curves of LDV output.
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Figure 4. Pitch angle errors by different schemes in the first vehicle test.

Figure 5. Roll angle errors by different schemes in the first vehicle test.

Figure 6. Heading angle errors by different schemes in the first vehicle test.
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Figure 7. Pitch angle errors by different schemes in the second vehicle test.

Figure 8. Roll angle errors by different schemes in the second vehicle test.

Figure 9. Heading angle errors by different schemes in the second vehicle test.
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Table 1. Statistics of the heading angle errors of vehicle in the first
vehicle test.

Time (s)

1–90 1–180 181–300

Scheme 1 Mean 4.5305 −0.0629 0.0261
STD 17.9068 0.0347 0.0168

Scheme 2 Mean 23.8523 −0.6669 −0.1545
STD 79.8593 0.2515 0.0799

Scheme 3 Mean 43.8600 2.7299 0.3911
STD 29.0322 1.8951 0.1659

Scheme 4 Mean 4.2385 −0.0176 0.0426
STD 17.8764 0.0285 0.0186

Scheme 5 Mean 4.9030 −0.0916 0.0903
STD 22.5246 0.0897 0.0576

Table 2. Statistics of the heading angle errors of vehicle in the
second vehicle test.

Time (s)

1–120 121–180 181–300

Scheme 1 Mean 155.2387 −0.2596 −0.6237
STD 141.2276 0.5144 0.1205

Scheme 2 Mean 65.9164 24.6140 12.4455
STD 61.5175 3.7126 2.7695

Scheme 3 Mean 120.9258 37.0303 14.5144
STD 27.0361 11.9686 3.9573

Scheme 4 Mean 178.4269 −32.4598 −10.1751
STD 156.4519 12.1312 2.6554

Scheme 5 Mean 120.6761 36.9096 14.4593
STD 27.0265 11.9503 3.9424

at short notice. Compared with the results of the first vehicle
test, the results of the second vehicle test show that scheme
1 has the best robustness and alignment accuracy under harsh
conditions.

In order to compare the alignment performance of the four
schemes more specifically, the mean and standard deviation
(STD) are compared. The statistics are shown in tables 1
and 2.

From table 1 we can see that the means of the heading angle
errors of schemes 1, 4 and 5 are little different and smaller than
those for schemes 2 and 3 between 1 and 90 s, illustrating that
the convergence speeds of schemes 1, 4 and 5 are faster than
those of schemes 2 and 3. The mean and STD of scheme 1
for 181–300 s are the smallest among the five schemes, which
shows that scheme 1 has the best performance at 180–300 s.
Table 2 tells us that that when the output of the LDV is dis-
turbed by noise, the mean and STD of scheme 1 at 120–300 s
are obviously smaller than those of the other schemes, imply-
ing that the advantage of scheme 1 in the second vehicle test
is more significant than that in the first vehicle test. Therefore,
scheme 1 is more suitable for in-motion alignment than the
other schemes.

Considering the requirements for the amount of calcula-
tion for the algorithm in practical engineering applications,
we compared the time required for computer processing of
the alignment process data in two vehicle tests according to

Table 3. Time complexity comparison of different schemes.

Time (s)

Scheme Test 1 Test 2

Scheme 1 19.5758 18.4083
Scheme 2 13.5719 12.6162
Scheme 3 17.2963 16.3573
Scheme 4 17.7083 16.6753
Scheme 5 18.4216 17.4598

different schemes (table 3). As can be seen from table 3, the
time complexity of scheme 1 is not much more than that of the
other schemes. Compared with the superior performance of
scheme 1, the amount of increased computation is acceptable.
Therefore, scheme 1 is promising for practical engineering
applications.

5. Conclusion

The quality of the initial alignment results will directly
affect the subsequent navigational accuracy. A faster robust
in-motion initial alignment method, named AUSQUHE, for
LDV-aided SINS is proposed in this paper. First, the pro-
cess model and measurement model for LDV-aided SINS in-
motion alignment is derived through skillful attitude matrix
decomposition and velocity kinematic equation reconstruc-
tion. AUSQUHE is proposed in order to reduce the influence
of both approximations in the modeling process, namely the
uncertainty noise of the sensors during the motion process and
the inaccurate noise parameter setting in the filtering process.
The performance of AUSQUHE is much better than that of
the other methods in the comparison as it uses H-infinite filter
theory and introduces an adaptive noise covariance matrix and
adaptive H-infinite filtering threshold. Two vehicle tests were
carried out to verify the robustness and accuracy of the pro-
posed in-motion alignment method. The test results show that
the performance of the proposed method is better than that of
the other compared methods, regardless of whether the LDV
signal is disturbed by noise or not. When the LDV signal is
disturbed by noise, the advantages of the proposed scheme are
more obvious.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Acknowledgments

This research was financially supported by the Major Basic
Autonomous Research Project of the College of Advanced
Interdisciplinary Studies, National University of Defense
Technology (ZDJC19-12).

ORCID iD

Jian Zhou https://orcid.org/0000-0001-6443-2644

11

https://orcid.org/0000-0001-6443-2644
https://orcid.org/0000-0001-6443-2644


Meas. Sci. Technol. 33 (2022) 035001 Z Xiang et al

References

[1] Wang Q, Gao C, Zhou J, Wei G, Nie X and Long X 2018
Two-dimensional laser Doppler velocimeter and its
integrated navigation with a strapdown inertial navigation
system Appl. Opt. 57 3334

[2] Titterton D H, Weston J L and Weston J 2004 Strapdown
Inertial Navigation Technology 2nd edn (London: The
Institution of Electrical Engineers)

[3] Groves P D 2008 Principles of GNSS, Inertial, and
Multisensor Integrated Navigation Systems (London:
Artech House)

[4] Lu J, Liang S and Yang Y 2019 Backtracking scheme for
single-point self-calibration and rapid in-motion alignment
with application to a position and azimuth determining
system Meas. Sci. Technol. 30 15102

[5] Wu Y 2013 Velocity/position integration formula part II:
application to strapdown inertial navigation computation
IEEE Trans. Aerosp. Electron. Syst. 49 1024–34

[6] Wu M, Wu Y, Hu X and Hu D 2011 Optimization-based
alignment for inertial navigation systems: theory and
algorithm Aerosp. Sci. Technol. 15 1–17

[7] Wu Y and Pan X 2013 Velocity/position integration formula
part I: application to in-flight coarse alignment IEEE Trans.
Aerosp. Electron. Syst. 49 1006–23

[8] Zhang Q, Li S, Xu Z and Niu X 2020 Velocity-based
optimization-based alignment (VBOBA) of low-end MEMS
IµGNSS for low dynamic applications IEEE Sens. J.
20 5527–39

[9] Zhang Y, Luo L, Fang T, Li N and Wang G 2018 An improved
coarse alignment algorithm for odometer-aided SINS based
on the optimization design method Sensors 18 195

[10] Kang L, Ye L and Song K 2014 A fast in-motion alignment
algorithm for DVL aided SINS Math. Probl. Eng.
2014 1–12

[11] Xu X, Xu D, Zhang T and Zhao H 2019 In-motion coarse
alignment method for SINS/GPS using position loci IEEE
Sens. J. 19 3930–8

[12] Chang L, Li J and Li K 2016 Optimization-based alignment
for strapdown inertial navigation system: comparison and
extension IEEE Trans. Aerosp. Electron. Syst.
52 1697–713

[13] Huang Y, Zhang Y and Wang X 2017 Kalman-filtering-based
in-motion coarse alignment for odometer-aided SINS IEEE
Trans. Instrum. Meas. 66 3364–77

[14] Luo L, Huang Y, Zhang Z and Zhang Y 2021 A new Kalman
filter-based in-motion initial alignment method for

DVL-aided low-cost SINS IEEE Trans. Veh. Technol.
70 331–43

[15] Luo L, Huang Y, Zhang Z and Zhang Y 2021 A position
loci-based in-motion initial alignment method for low-cost
attitude and heading reference system IEEE Trans. Instrum.
Meas. 70 1–18

[16] Huang Y, Zhang Y and Chang L 2018 A new fast in-motion
coarse alignment method for GPS-aided low-cost SINS
IEEE/ASME Trans. Mechatronics 23 1303–13

[17] Chang L, Li Y and Xue B 2017 Initial alignment for a Doppler
velocity log-aided strapdown inertial navigation system
with limited information IEEE/ASME Trans. Mechatronics
22 329–38

[18] Chang L, He H and Qin F 2017 In-motion initial alignment for
odometer-aided strapdown inertial navigation system based
on attitude estimation IEEE Sens. J. 17 766–73

[19] Jian Z and Xingwu L 2010 Research on laser Doppler
velocimeter for vehicle self-contained inertial navigation
system Opt. Laser Technol. 42 477–83

[21] Zhou J, Nie X and Lin J 2014 A novel laser Doppler
velocimeter and its integrated navigation system with
strapdown inertial navigation Opt. Laser Technol.
64 319–23

[20] Nie X and Zhou J 2020 Pitch independent vehicle-based laser
Doppler velocimeter Opt. Lasers Eng. 131 106072

[22] Wang Q, Nie X, Gao C, Zhou J, Wei G and Long X 2018
Calibration of a three-dimensional laser Doppler
velocimeter in a land integrated navigation system Appl.
Opt. 57 8566–72

[23] Huang R, Wang Q, Nie X and Zhou J 2020 One-dimensional
reference-beam LDV for accurate altitude estimation in a
land vehicle Appl. Opt. 59 10667–72

[24] Markley F L, Cheng Y, Crassidis J L and Oshman Y 2007
Averaging quaternions J. Guid. Control. Dyn. 30 1193–7

[25] Chang L, Hu B and Chang G 2014 Modified unscented
quaternion estimator based on quaternion averaging J.
Guid. Control. Dyn. 37 305–8

[26] Wang J, Chen X and Yang P 2021 Adaptive H-infinite kalman
filter based on multiple fading factors and its application in
unmanned underwater vehicle ISA Trans. 108 295–304

[27] Zhao J, Netto M and Mili L 2017 A robust iterated extended
Kalman filter for power system dynamic state estimation
IEEE Trans. Power Syst. 32 3205–16

[28] Zhou K, Doyle J C and Glover K 2002 Robust and optimal
control 35th IEEE Conf. Decision and Control IEEE Conf.
Decis. Control (Kobe, Japan) (https://doi.org/10.1109/
CDC.1996.572756)

12

https://doi.org/10.1364/AO.57.003334
https://doi.org/10.1364/AO.57.003334
https://doi.org/10.1088/1361-6501/aae918
https://doi.org/10.1088/1361-6501/aae918
https://doi.org/10.1109/TAES.2013.6494396
https://doi.org/10.1109/TAES.2013.6494396
https://doi.org/10.1016/j.ast.2010.05.004
https://doi.org/10.1016/j.ast.2010.05.004
https://doi.org/10.1109/TAES.2013.6494395
https://doi.org/10.1109/TAES.2013.6494395
https://doi.org/10.1109/JSEN.2020.2970277
https://doi.org/10.1109/JSEN.2020.2970277
https://doi.org/10.3390/s18010195
https://doi.org/10.3390/s18010195
https://doi.org/10.1155/2014/593692
https://doi.org/10.1155/2014/593692
https://doi.org/10.1109/JSEN.2019.2896274
https://doi.org/10.1109/JSEN.2019.2896274
https://doi.org/10.1109/TAES.2016.130824
https://doi.org/10.1109/TAES.2016.130824
https://doi.org/10.1109/TIM.2017.2737840
https://doi.org/10.1109/TIM.2017.2737840
https://doi.org/10.1109/TVT.2020.3048730
https://doi.org/10.1109/TVT.2020.3048730
https://doi.org/10.1109/tim.2020.3020682
https://doi.org/10.1109/tim.2020.3020682
https://doi.org/10.1109/TMECH.2018.2835486
https://doi.org/10.1109/TMECH.2018.2835486
https://doi.org/10.1109/TMECH.2016.2616412
https://doi.org/10.1109/TMECH.2016.2616412
https://doi.org/10.1109/JSEN.2016.2633428
https://doi.org/10.1109/JSEN.2016.2633428
https://doi.org/10.1016/j.optlastec.2009.09.001
https://doi.org/10.1016/j.optlastec.2009.09.001
https://doi.org/10.1016/j.optlastec.2014.06.001
https://doi.org/10.1016/j.optlastec.2014.06.001
https://doi.org/10.1016/j.optlaseng.2020.106072
https://doi.org/10.1016/j.optlaseng.2020.106072
https://doi.org/10.1364/AO.57.008566
https://doi.org/10.1364/AO.57.008566
https://doi.org/10.1364/AO.405473
https://doi.org/10.1364/AO.405473
https://doi.org/10.2514/1.28949
https://doi.org/10.2514/1.28949
https://doi.org/10.2514/1.61723
https://doi.org/10.2514/1.61723
https://doi.org/10.1016/j.isatra.2020.08.030
https://doi.org/10.1016/j.isatra.2020.08.030
https://doi.org/10.1109/TPWRS.2016.2628344
https://doi.org/10.1109/TPWRS.2016.2628344
https://doi.org/10.1109/CDC.1996.572756
https://doi.org/10.1109/CDC.1996.572756

	In-motion initial alignment method for a laser Doppler velocimeter-aided strapdown inertial navigation system based on an adaptive unscented quaternion H-infinite filter
	1. Introduction
	2. In-motion alignment for LDV/SINS
	2.1. Process model
	2.2. Measurement model

	3. Proposed AUSQUHE algorithm
	3.1. Time update
	3.2. Measurement update
	3.2.1. Estimation of measurement noise covariance matrices.
	3.2.2. Adaptive unscented H-infinite filter.

	3.3. Attitude update

	4. Vehicle-mounted field test
	5. Conclusion
	Acknowledgments
	References


